翻訳と辞書 |
Saturated set : ウィキペディア英語版 | Saturated set In mathematics, in particular in topology, a subset of a topological space (''X'', ''τ'') is saturated if it is an intersection of open subsets of ''X''. In a T1 space every set is saturated. Saturated sets can also be defined in terms of surjections: let be a surjection; a subset ''C'' of ''X'' is called saturated with respect to ''p'' if for every ''p''−1(''A'') that intersects ''C'', ''p''−1(''A'') is contained in ''C''. This is equivalent to the statement that ''p''−1''p''(''C'')''=''C''. == References ==
* *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Saturated set」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|